Quizoo くいずー

 一問一答クイズ [No.11060]
  何歳でSHOW より  歳を答えてください
問題 Bさんは2053年91歳になります。Bさん2014年何歳になっている?
  1. 42歳
  2. 72歳
  3. 52歳
  4. 62歳
   
制限時間 : 無制限
難易度 初級
出題数 202人中
正解数 164人
正解率 81.19%正解率
作成者 虎朧丸虎朧丸 (ID:2175)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①65歳
②35歳
③55歳
④72歳
解答を表示する

正解:45歳

①45歳
②65歳
③45歳
④55歳
解答を表示する

正解:②

①1987年
②75歳
③1977年
④2007年
解答を表示する

正解:③

①45歳
②55歳
③1997年
④65歳
解答を表示する

正解:②

①2076年
②2086年
③2066年
④2096年
解答を表示する

正解:②

①2054年
②2034年
③75歳
④2024年
解答を表示する

正解:②

①2066年
②2076年
③2059年
④2044年
解答を表示する

正解:①

①52歳
②42歳
③32歳
④22歳
解答を表示する

正解:③

①53歳
②43歳
③54歳
④2069年
解答を表示する

正解:①

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13543
②12423
③14443
④63歳
解答を表示する

正解:③

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①467832
②466662
③422222
④13333
解答を表示する

正解:②

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①544442
②25653
③23433
④25553
解答を表示する

正解:④

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1123221
②1323231
③1232321
④24643
解答を表示する

正解:1222221

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①6661
②6771
③7651
④6781
解答を表示する

正解:②

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2567765
②1222221
③2777775
④2767675
解答を表示する

正解:③

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①2577555
②3996
③3936
④3876
解答を表示する

正解:②

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①475763
②477773
③467673
④3676
解答を表示する

正解:②

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①777778
②755558
③478983
④866658
解答を表示する

正解:④

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①12222222
②878788
③91222212
④10222212
解答を表示する

正解:④

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①876661
②92222222
③777771
④677661
解答を表示する

正解:788881

解説:71×11111= ⇒7&(7+1)・・&1=788881

①100001
②788881
③911111
④101101
解答を表示する

正解:④

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①90101
②444888444
③488888884
④448888844
解答を表示する

正解:③

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①500005
②488885
③477775
④499995
解答を表示する

正解:④

解説:45×11111= ⇒4&(4+5)・・&5=499995

①899991
②484848484
③797971
④888881
解答を表示する

正解:①

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①878781
②5888888883
③5678987653
④5999999993
解答を表示する

正解:②

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883