Quizoo くいずー

 一問一答クイズ [No.10806]
  ★ 11,12段のかけ算 より  11,12の段のかけ算です。ぜひ,お試しあれ。
問題 11×18
  1. 228
  2. 208
  3. 198
  4. 218
   
制限時間 : 無制限
難易度 初級
出題数 179人中
正解数 167人
正解率 93.3%正解率
作成者 KUROZU (ID:1629)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
登録タグ登録タグ
関連するクイズ・検定関連するクイズ・検定
その他のクイズ・検定その他のクイズ・検定
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①228
②131
③121
④101
解答を表示する

正解:③

①122
②142
③152
④111
解答を表示する

正解:132

①132
②123
③153
④143
解答を表示する

正解:④

①144
②133
③134
④154
解答を表示する

正解:④

①124
②175
③165
④185
解答を表示する

正解:③

①156
②146
③166
④176
解答を表示する

正解:④

①167
②197
③177
④187
解答を表示する

正解:④

①209
②219
③199
④155
解答を表示する

正解:①

①122
②152
③229
④132
解答を表示する

正解:④

①142
②124
③134
④114
解答を表示する

正解:144

①146
②144
③136
④156
解答を表示する

正解:④

①168
②198
③178
④188
解答を表示する

正解:①

①170
②166
③180
④190
解答を表示する

正解:③

①160
②203
③192
④182
解答を表示する

正解:③

①194
②204
③184
④202
解答を表示する

正解:②

①206
②226
③174
④236
解答を表示する

正解:216

①218
②216
③228
④238
解答を表示する

正解:③

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13543
②12423
③14443
④208
解答を表示する

正解:③

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①544442
②466662
③467832
④13333
解答を表示する

正解:②

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①24643
②23433
③25553
④422222
解答を表示する

正解:③

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①25653
②1232321
③1123221
④1222221
解答を表示する

正解:④

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①1323231
②6781
③7651
④6661
解答を表示する

正解:6771

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2567765
②2767675
③2777775
④2577555
解答を表示する

正解:③

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3876
②3996
③3676
④3936
解答を表示する

正解:②

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①6771
②467673
③477773
④478983
解答を表示する

正解:③

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①866658
②755558
③475763
④878788
解答を表示する

正解:①

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①12222222
②91222212
③10222212
④777778
解答を表示する

正解:③

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①677661
②788881
③777771
④876661
解答を表示する

正解:②

解説:71×11111= ⇒7&(7+1)・・&1=788881

①90101
②100001
③92222222
④911111
解答を表示する

正解:101101

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①101101
②444888444
③448888844
④484848484
解答を表示する

正解:488888884

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①499995
②500005
③477775
④488885
解答を表示する

正解:①

解説:45×11111= ⇒4&(4+5)・・&5=499995

①888881
②488888884
③878781
④899991
解答を表示する

正解:④

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5678987653
②5789878983
③797971
④5888888883
解答を表示する

正解:④

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883