Quizoo くいずー

 一問一答クイズ [No.11957]
  い より  「い」に関連したパズルクイズ!?!?
問題 いちをたすと100になる数からいちをひくといくらになりますか。
  1. 101
  2. 99
  3. 98
  4. 100
   
制限時間 : 無制限
難易度 初級
出題数 1965人中
正解数 1788人
正解率 90.99%正解率
作成者 トシデス (ID:1295)
最高連続正解数  0 問
現在の連続記録  0 問 ※ユーザーの方は記録が更新されます
一問一答クイズ一覧
このクイズ・検定に挑戦!
予習・復習
登録タグ登録タグ
関連するクイズ・検定関連するクイズ・検定
その他のクイズ・検定その他のクイズ・検定
クイズ・検定一覧
○×マルバツクイズ一覧
トップページ
 予習・復習/一問一答クイズ
出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①12
②22
③101
④52
解答を表示する

正解:32

解説:前の数字を2倍すると次の数字になります

①b
②e
③d
④c
解答を表示する

正解:①

①−4
②32
③4
④−5
解答を表示する

正解:①

①525円
②5
③540円
④500円
解答を表示する

正解:①

①1
②550円
③2
④3
解答を表示する

正解:③

①4
②180cm
③170cm
④175cm
解答を表示する

正解:④

①ひし形
②正方形
③165cm
④円
解答を表示する

正解:②

①15°
②60°
③45°
④長方形
解答を表示する

正解:30°

①300
②600
③400
④30°
解答を表示する

正解:③

一問一答クイズ一覧
このクイズ・検定に挑戦!
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13333
②12423
③13543
④14443
解答を表示する

正解:④

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①500
②466662
③467832
④544442
解答を表示する

正解:②

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①25653
②23433
③422222
④24643
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1123221
②1232321
③1222221
④25553
解答を表示する

正解:③

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①7651
②6661
③6781
④1323231
解答を表示する

正解:6771

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①2567765
②2577555
③2777775
④2767675
解答を表示する

正解:③

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3876
②6771
③3936
④3996
解答を表示する

正解:④

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①478983
②3676
③475763
④467673
解答を表示する

正解:477773

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①477773
②866658
③777778
④755558
解答を表示する

正解:②

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①12222222
②878788
③10222212
④91222212
解答を表示する

正解:③

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①876661
②788881
③777771
④677661
解答を表示する

正解:②

解説:71×11111= ⇒7&(7+1)・・&1=788881

①100001
②101101
③92222222
④90101
解答を表示する

正解:②

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①911111
②448888844
③484848484
④444888444
解答を表示する

正解:488888884

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①477775
②488888884
③499995
④488885
解答を表示する

正解:③

解説:45×11111= ⇒4&(4+5)・・&5=499995

①797971
②888881
③500005
④899991
解答を表示する

正解:④

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5888888883
②5999999993
③878781
④5678987653
解答を表示する

正解:①

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883